Discontinuità di una funzione – Matematica


Punti di discontinuità delle funzioni matematiche a una variabile Prima di parlare della discontinuità di una funzione matematica a una variabile è bene ricordare cosa si intende per continuità ...




Categoria dell'articolo: Matematica

Lezioni e ripetizioni di matematica, analisi matematica, geometrica analitica ed euclidea, equazioni, disequazioni, logaritmi, goniometria e trigonometria, limiti, derivate, studio di funzione, integrali: teoria, esempi, problemi ed esercizi svolti. Tracce di maturità scientifica svolte. Per scuole medie inferiori e superiori.





Autore articolo:



Punti di discontinuità delle funzioni matematiche a una variabile

Prima di parlare della discontinuità di una funzione matematica a una variabile è bene ricordare cosa si intende per continuità di una funzione  in un punto x*. Cercando di dare una definizione molto semplice, si può pensare a una funzione continua come al disegno di una linea sul piano cartesiano “, senza staccare la matita dal foglio”. Se una funzione è continua in un punto, in tale punto il suo grafico non presenta interruzioni.

f:R → R
y=f(x), con x=x*

Discontinuità - Funzione continuna

Discontinuità – Funzione continua

La continuità è definita dall’uguaglianza del limite destro  e di quello sinistro con il valore che la funzione assume proprio nel punto x*, ovvero:

Discontinuità di una funzione

Una funzione si dice continua se è verificata la continuità in ogni punto del suo intervallo di definizione o campo di esistenza. Quando la continuità esiste in tutti i punti di un intervallo, la funzione si dice continua nell’intervallo. In ragione di questo, si parla di funzione  discontinua quando le uguaglianze di cui sopra non sussistono. Quindi una funzione che non è continua in un punto si dice discontinua in quel punto.

In particolare si definiscono tre tipologie o specie che rendono discontinua la funzione in un punto:

Funzione con discontinuità di prima specie in un punto x*

Si ha un punto discontinuo di prima specie quando esistono finiti i limiti destro e sinistro ma sono diversi tra loro:

Discontinuità di prima specie

Discontinuità di prima specie

Ricapitolando:

Discontinuità 1S



La differenza |k1 – k2 | si dice salto della funzione.

Esempio:

Esempio di discontinuità 1S

Esempio di discontinuità di prima specie

La funzione “segno di x” ha è discontinua in x*=0, la tipologia è di prima specie. In questo caso il salto è pari a |-1 – 1| = 2.

Funzione con discontinuità di seconda specie in un punto x*

Si ha un punto discontinuo di seconda specie quando almeno uno (quindi anche entrambi) dei due limiti (destro o sinistro) non esiste o tende a infinito:

Discontinuità di seconda specie

Discontinuità di seconda specie

Ricapitolando i punti fermi da studiare sono (è un esempio teorico):

Discontinuità 2S

Esempio:

Esempio di discontinuità 2S

Esempio di discontinuità di seconda specie



Nel punto x*=1 si ha la funzione è discontinua. Nel caso di questa funzione particolare, il limite destro vale -infinito mentre il limite sinistro vale +infinito.

Funzione con discontinuità di terza specie o eliminabile in un punto x*

Si ha un punto discontinuo di terza specie o eliminabile quando esistono finiti e sono uguali i limiti destro e sinistro ma non esiste la funzione in x* oppure se il valore della funzione in x* è diverso dal valore del limite:

Discontinuità di terza specie

Discontinuità di terza specie

Ricapitolando i punti fermi da studiare sono :

Discontinuità 3S

Esempio:

Esempio di discontinuità 3S

Esempio di discontinuità di terza specie

Nel punto x*=1 si ha la funzione è discontinua. Il salto è nullo. Inoltre la funzione può essere resa continua ripristinando il punto “mancante”.

Note:

Per scoprire la presenza di punti che rendono la funzione discontinua, occorre studiare tutti i punti che non fanno parte del campo di esistenza della funzione, tranne che non siano gli estremi dello stesso.

Link utili:






Random Post

PREVISIONE LOTTO n° 38 di 150 per SABATO 4 MARZO 2017

PREVISIONE  LOTTO n° 38 di 150 per SABATO 4 MARZO 2017 Esito della previsione precedente:1)BARI: Estratto; 2)BARI: Estratto; 3)BARI: Estratto; 4)MILANO: Estratto; 5)CAGLIARI: Estratto. In merito all...

Vai al post...

Gelato, gelati – Interpretazione dei sogni

Il gelato, i gelati nei sogni: coppe gelato alla frutta, creme, brioches: significati, interpretazioni e numeri della cabala associati. I sogni con a tema il gelato sono connessi alla qualità di esse...

Vai al post...

Gatti, gatto, gattini – Interpretazione dei sogni

Significato, interpretazione, simbologia e numeri della smorfia associati al sognare un gatto o più gatti e gattini. Il gatto è noto per la sua indifferenza e ‘freddezza’, per essere con...

Vai al post...

Enneatipo 4: artista

Enneatipo 4: artista Avete fatto il test sull’enneatipo di appartenenza? Avete ottenuto una maggioranza di QUATTRO? allora leggete qua di seguito: Il tipo Quattro ha grande senso artistico, gusto d...

Vai al post...
Disclaimer:


Questo blog NON è un prodotto editoriale ai sensi della legge n° 62 del 7 marzo 2001. Le immagini tratte da internet che possano violare i diritti di autore, previa comunicazione, attraverso la sezione -contatti-, verranno prontamente rimosse o sostituite.

Copyright:


I contenuti presenti su ROMOLETTO BLOG dei quali è autore il proprietario del blog non possono essere copiati, riprodotti, redistribuiti perché appartenenti all autore stesso. Si vieta la copia e la riproduzione dei contenuti in qualsiasi modo o forma. Si vieta altresì la pubblicazione e la redistribuzione dei contenuti non autorizzata espressamente dell autore.


Copyright © 2011 / 2017 - ROMOLETTO BLOG - All Right Reserved

IngAC

Informazioni su Romoletto

Ingegnere Civile, Blogger, Programmatore VB.NET, Lezioni private per scuole medie inferiori e superiori. Per contattarmi scorri la home fino in fondo e vai al form -Contatti-

Navigazione per Articoli della stessa Categoria