Circonferenza C173 – Problemi di Geometria Analitica


Categoria dell'articolo: Matematica

Lezioni e ripetizioni di matematica, analisi matematica, geometrica analitica ed euclidea, equazioni, disequazioni, logaritmi, goniometria e trigonometria, limiti, derivate, studio di funzione, integrali: teoria, esempi, problemi ed esercizi svolti. Tracce di maturità scientifica svolte. Per scuole medie inferiori e superiori.





Articolo pubblicato da:

Condividi articolo:

Circonferenza C173 – Problemi risolti di Geometria Analitica

Una serie di problemi di geometria analitica risolti durante le ripetizioni date a studenti delle superiori e del primo anno di università di varie facoltà e presi da vari testi scolastici. Circonferenza C173 è un problema di difficoltà medio-alta.

Informazione

Hai necessità di lezioni private? Vuoi la spiegazione di un esercizio? Vuoi qualcuno che ti faccia i compiti per dopodomani? Contatta Romoletto Blog per maggiori informazioni!


Traccia del problema sulla Circonferenza C173

Dati il punto P(0;3) e il punto B(-2;1) appartenente alla retta r di equazione 11x-3y+25=0, tangente ad una circonferenza γ passante per il punto P, determinare l’equazione di γ. Calcolare poi la tangente alla circonferenza nel punto D di ascissa 3 e di ordinata positiva. (Fonte: presumibilmente Zanichelli – Matematica)

Dati:

P(0;3), B(-2;1) ∈ γ (γ circonferenza). Tangente  in B alla circonferenza r: 11x-3y+25=0.

Soluzione:

Quesito 1)

Circonferenza C173 - dati

Circonferenza C173 – dati

L’equazione generica di una circonferenza è del tipo:

x2+y2+ax+by+c=0

che dipende quindi dai valori di a, b, c che perciò devono essere in qualche modo determinati. Poichè sappiamo che P ∈ γ e che anche B ∈ γ (in quanto è un punto di tangenza) allora possiamo già scrivere due equazioni:

P(0;3)  → (0)2+(3)2+a(0)+b(3)+c=0
B(-2;1) → (-2)2+(1)2+a(-2)+b(1)+c=0

Ce ne manca una terza per avere un sistema di tre equazioni in tre incognite e poter quindi determinare a,b e c. La terza equazione la ricaviamo osservando che la retta tangente in B ha coefficiente angolare:

mr=-a/b  → mr= 11/3

Poichè il raggio della circonferenza è sempre perpendicolare alle tangenti e in particolare a quella in B, allora il coefficiente angolare di una retta passante per B e per il centro C (ignoto) della circonferenza sarà:

ms= -1/mr → m= -3/11

Il coefficiente angolare ms si ricava essendo C(xC; yC) o per comodità notativa C(α;β) dove, per definizione:

α=-a/2 e β=-b/2

per cui si avrà:

ms= Δy/Δx = (yB-yC)/(xB-xC) =
sostituendo: 
ms= (1-β)/(-2-α) = (1+b/2)/(-2+a/2) = -3/11

Circonferenza C173 - coefficiente angolare

Circonferenza C173 – coefficiente angolare

Le tre equazioni a sistema, svolti un po’ di passaggi, saranno quindi:

   / 9+3b+c=0
<    5-2a+b+c=0
   \ 11b+3c+10=0

Il sistema, risolto fornisce:

a=-3/2; b=-1/2; c=-15/2.

L’equazione della circonferenza sarà quindi:

x2+y– (3/2)x-(1/2)y-(15/2)=0
2x2+2y– 3x-y-15=0

Quesito 2)

Determiniamo il punto D(3; yD). Non conosciamo infatti l’ordinata. Procediamo quindi sostituendo 3 al posto della x nell’equazione della circonferenza appena trovata:

2(3)2+2y– 3(3)-y-15 = 0
18+2y– 9-y-15 = 0
2y– y + 6 = 0

Abbiamo ottenuto una equazione di secondo grado, che ci darà due soluzioni di cui una sarà positiva e sarà quella da scegliere, come richiesto dalla traccia. Risolvendola:

Δ=b2+4ac → Δ=1+48=49 → √Δ=7
y1,2=(1±7)/4 
y1=-3/2 e y2=2

quindi D(3,2).

Circonferenza C173 - punto D

Circonferenza C173 – punto D

La tangente a un punto sulla circonferenza si ricava costruendo un fascio di rette con centro nel punto desiderato (D in questo caso) e cercando il coefficiente angolare della retta contenente il raggio in quel punto (r=CD in questo caso), ricordando sempre che tangente e raggio sono sempre perpendicolari. Occorrono le coordinate di C(α;β) dove, per definizione α=-a/2 e β=-b/2.

α=3/4 e β=1/4 → C(¾; ¼)

Calcolo il coefficiente angolare:

C(¾; ¼);  D(3,2)

mD= Δy/Δx = (yD-yC)/(xD-xC) → mD=7/9

A noi serve :

mt=-1/mD → mt=-9/7

L’equazione del fascio con centro in D è:

y-y= mt(x-xD)

quindi sostituendo:

y-2 = -(9/7)(x-3)
9x+7y -41 = 0

Circonferenza C173 - tangente in D

Circonferenza C173 – tangente in D

Link utili:



Random Post

PREVISIONE LOTTO n° 104 di 150 per SABATO 5 AGOSTO 2017

Previsione Lotto 5 Agosto 2017

PREVISIONE LOTTO n° 104 di 150 per SABATO 5 AGOSTO 2017 Esito della previsione precedente: 1)ROMA: Estratto; 2)GENOVA: Niente; (BA Ambo+02-Ambetti); G|TORINO: 1euro 10eLotto. Test “beta V3̶...

Vai al post...

PREVISIONE LOTTO n° 100 di 150 per GIOVEDÌ 27 LUGLIO 2017

Previsione Lotto 27 Luglio 2017

PREVISIONE LOTTO n° 100 di 150 per GIOVEDÌ 27 LUGLIO 2017 Esito della previsione precedente: 2)GENOVA: Estratto – (ambo Roma e Nazionale); 3)GENOVA: Estratto – (ambo Roma); 4)GENOVA: Est...

Vai al post...

Daniela – Significato dei nomi – 31 Luglio

Daniela - Significato dei nomi

Daniela – Significato dei nomi. Questo nome deriva dall’ ebraico “Daniy’el” ed è costituito dal predicato “dan“, che significa “ha giudicato” e d...

Vai al post...

PUBBLICITÀ



Disclaimer:


Questo blog NON è un prodotto editoriale ai sensi della legge n° 62 del 7 marzo 2001. Le immagini tratte da internet che possano violare i diritti di autore, previa comunicazione, attraverso la sezione -contatti-, verranno prontamente rimosse o sostituite.

Copyright:


I contenuti presenti su ROMOLETTO BLOG dei quali è autore il proprietario del blog non possono essere copiati, riprodotti, redistribuiti perché appartenenti all autore stesso. Si vieta la copia e la riproduzione dei contenuti in qualsiasi modo o forma. Si vieta altresì la pubblicazione e la redistribuzione dei contenuti non autorizzata espressamente dell autore.


Copyright © 2011 / 2017 - ROMOLETTO BLOG - All Right Reserved

IngAC

Informazioni su Romoletto

Ingegnere Civile, Blogger, Programmatore VB.NET, Lezioni private per scuole medie inferiori e superiori. Per contattarmi scorri la home fino in fondo e vai al form -Contatti-

Navigazione per Articoli della stessa Categoria