Maturità Scientifica 2017 – Problema 2 – Quesito 2


Categoria dell'articolo: Matematica

Lezioni e ripetizioni di matematica, analisi matematica, geometrica analitica ed euclidea, equazioni, disequazioni, logaritmi, goniometria e trigonometria, limiti, derivate, studio di funzione, integrali: teoria, esempi, problemi ed esercizi svolti. Tracce di maturità scientifica svolte. Per scuole medie inferiori e superiori.





Articolo pubblicato da:

Condividi articolo:

Maturità Scientifica 2017 – Problema 2 – Quesito 2 – Matematica

Una serie di problemi di matematica delle Prove di Maturità del Liceo Scientifico risolti durante le ripetizioni date a studenti. Maturità Scientifica 2017 è la raccolta delle tracce 2017 e dello svolgimento dei relativi problemi di difficoltà alta, sia per ragionamenti e competenze necessarie che per via del tempo di svolgimento. A questo link la traccia completa in pdf.

Informazione

Hai necessità di lezioni private? Vuoi la spiegazione di un esercizio? Vuoi qualcuno che ti faccia i compiti per dopodomani? Contatta Romoletto Blog per maggiori informazioni!


Traccia del Problema 2 della Maturità Scientifica 2017 – Quesito 2

Consideriamo la funzione f : R → R , periodica di periodo T=4 il cui grafico, nell’intervallo [0;4], è il seguente:

Figura 1 Problema 2 Quesito 1 Maturità Scientifica 2017

Figura 1 Problema 2 Quesito 2 Maturità Scientifica 2017

Come si evince dalla Figura 1, i tratti OB, BD, DE del grafico sono segmenti i cui estremi hanno coordinate:

O(0; 0), B(1; 1), D(3; −1), E(4; 0).

Quesito 2: Considera la funzione: s(x) = sin(bx), con b costante reale positiva. determina b in modo che s(x) abbia lo stesso periodo di f(x).
Dimostra che la porzione quadrata di piano OABC in Figura 1 viene suddivisa dai grafici di f(x) e s(x) in 3 parti distinte e determina le probabilità che un punto preso a caso all’interno del quadrato OABC ricada in ciascuna delle 3 parti individuate.

Svolgimento:

Questo quesito richiede di determinare una costante reale e positiva b, tale che il sen(bx) abbia periodo T = 4. La funzione y = sen(x), con  b*=1 quindi, ha periodo, come è noto, T*=2π. Inoltre se una funzione y=f(x) è periodica di periodo T, allora la funzione y=(kx), con k reale diverso da zero, è periodica di periodo T/|k|. Nel nostro caso il periodo della funzione g(x) = sen(bx) deve essere T=T*/b, dove T* è il periodo della funzione sen(x) e T è quello dato. Quindi sostituendo:

4 = 2π/b
b=2π/4=π/2.
b=π/2

Per controllo vediamo gli zeri:

x=0 → sen (x· π/2) =  sen (  0) = 0 (OK)
x=2 → sen (x· π/2) =  sen (  π) = 0 (OK)
x=4 → sen (x· π/2) =  sen (2π) = 0 (OK)

Grafico Sinusoide Problema 2 Quesito 2 Maturità Scientifica 2017

Grafico Sinusoide Problema 2 Quesito 2 Maturità Scientifica 2017


 

Le tre parti in cui viene suddiviso il quadrato OABC sono illustrate di seguito:

Tre parti Quadrato Problema 2 Quesito 2 Maturità Scientifica 2017

Le tre parti in cui è suddiviso il quadrato OABC

Il quesito chiede di “dimostrare” che si formano 3 parti distinte: graficamente lo si vede subito; analiticamente si può dire che OB è la diagonale e che quindi già suddivide in 2 parti il quadrato, bisogna solo vedere se g(x) interseca la retta OB in altri punti che non siano gli estremi O e B (cioè considerando x∈(0,1)). E cosi è, anche mettendo a sistema:

y = x e y = sen(½πx) si ha che:  x = sen(½πx) quindi
arcsen(x)= ½ π x → arcsen(x)/x =  ½ π

Ricordando che l’arcoseno tra (0,1) varia tra (0, π/2) e che x varia tra (0,1) e che il loro rapporto è sempre maggiore di 1 (è uguale a ½ π infatti), significa appunto che il numeratore è sempre maggiore del denominatore. Quindi in questo caso sta sempre sopra e non si incontrano mai.


Per quanto riguarda l’ultima parte, il quesito vuole semplicemente che si calcolino  le aree A1, A2, e A3 la cui somma totale deve dare l’area del quadrato Aq. Con un semplice proporzione si ricaverà appunto la probabilità richiesta.

Aq = l= 1

A3= Aq/2 = ½

A2 = Asinusoide – A3

ricordando che :

∫sen[f(x)] · f ‘(x) dx = – cos[f(x)] + c

andiamo a calcolare l’integrale seguente:

                    1                                                                      1
Asinusoide= ∫ sin(½ π x) dx = -[2 cos(½ π x)/π] = 2/π
                0                                                                          0

A2=2/π -½ = (4-π)/(2π) ≅ 0,637-0,5=0,137

A1= Aq – Asinusoide = 1- 2/π ≅ 1-0,637=0,363

Poichè la probabilità totale è sempre 1, e fortunatamente coincide con l’area del quadrato, non occorrono pertanto ulteriori calcoli; se cosi non fosse stato si sarebbero dovute rapportare le varie aree A1, A2, A3 alla Aq e fare delle proporzioni. Quindi:

Ptot(Aq)=1,000 → 100,0%
P1(A1)=0,363 → 36,3%
P2(A2)=0,137 → 13,7%
P3(A3)=0,500 → 50,0%

Link per approfondire la prova di maturità scientifica 2017, matematica.



Random Post

Retta R024 – Problemi di Geometria Analitica

Grafico del retta del problema R024 - Geometria Analitica

Retta R024 – Problemi di Geometria Analitica. Una serie di problemi di geometria analitica risolti durante le ripetizioni date a studenti di Liceo Scientifico e del primo anno di università di...

Vai al post...

Giraffa, giraffe – Interpretazione dei sogni

Giraffa - Interpretazione dei sogni

La giraffa, le giraffe nei sogni: significati, interpretazioni e numeri della cabala o della smorfia associati. La giraffa è un mammifero africano ed è anche l’animale terreste più alto al mondo:...

Vai al post...

Barbone, clochard – Interpretazione dei sogni

barbone - significato dei sogni

Sognare un barbone o un senzatetto  senza fissa dimora. Interpretazione del sogno e numeri associati. Capita sovente ormai di incontrare per strade qualche senzatetto, barbone, o mendicante. La loro ...

Vai al post...

PUBBLICITÀ



Disclaimer:


Questo blog NON è un prodotto editoriale ai sensi della legge n° 62 del 7 marzo 2001. Le immagini tratte da internet che possano violare i diritti di autore, previa comunicazione, attraverso la sezione -contatti-, verranno prontamente rimosse o sostituite.

Copyright:


I contenuti presenti su ROMOLETTO BLOG dei quali è autore il proprietario del blog non possono essere copiati, riprodotti, redistribuiti perché appartenenti all autore stesso. Si vieta la copia e la riproduzione dei contenuti in qualsiasi modo o forma. Si vieta altresì la pubblicazione e la redistribuzione dei contenuti non autorizzata espressamente dell autore.


Copyright © 2011 / 2017 - ROMOLETTO BLOG - All Right Reserved

IngAC

Informazioni su Romoletto

Ingegnere Civile, Blogger, Programmatore VB.NET, Lezioni private per scuole medie inferiori e superiori. Per contattarmi scorri la home fino in fondo e vai al form -Contatti-

Navigazione per Articoli della stessa Categoria